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0 ABSTRACT

Any slowly varying linear space-variant system can, in

principle, be represented holographically by spatially samp-

ling the input plane and multiplexing the respective system

transfer functions. A scheme reported earlier for implement-

0 ing this technique makes use of phase diffusers in the ref-

erence beam paths to encode sequentially recorded holograms.

However,to minimize the cross talk between the holograms upon

i * playback the diffusers should have good correlation properties.

in this report extensive computer simulations to evaluate the

correlation properties of a family of binary phase codes are

0 conducted. An alternative multiplexing technique in which

the transfer functions are sampled in the Fourier plane to gen-

erate a composite hologram is also described. In this tech-

nique the samples of the transfer functions are placed in

nonoverlapping regions and hence there will be no crosstalk

upon playback. However multiple copies of the input function

are required during the playback step. The results of prelim-

inary experiments conducted to evaluate this approach for

space-variant system representation are presented including

the verification of coherent addition using computer multi-

plexed holograms.
iii
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CHAPTER 1

p INTRODUCTION

A method for holographically representing any band-

limited space-variant system using a sampling technique

has been described [1,2]. This method requires the se-

quential multiplexing of a number of holograms of the system

transfer functions in a single recording medium. As a

result of this multiplexing, many crosstalk terms are

generated upon playback in addition to the required system

response terms. Several crosstalk suppressing techniques,
t

using properties such as extinction angle effects of volume

holograms [31, and the correlation properties of phase codes

when used in the reference beam paths [4,51 have been suggested

for implementing this scheme. Experimental results using

ground-glass diffusers and binary amplitude-coded diffusers

have also been reported [6). Analytical studies to model

the characteri.stics of various diffusers have been carried

out [7]. Use of randomly generated binary amplitude diffusersr with computer multiplexed holograms has also been studied (8].

Preliminary studies on diffusers based on the known correla-

tion properties of the Gold codes used in spread spectrum

communication systems have been carried out [9].

The work presented in this report consists mainly of

two parts. In Chapter 2 results of extensive computer

0 simulations to study the auto and cross-correlation properties

of Gold codes of various lengths under different conditions,

L A1
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along with the computer simulated outputs when these codes

are used as phase diffusers in multiplex holography are

presented. In Chapters 3 and 4 an alternate method of multi-

plexing the transfer functions using a sampling technique,

along with preliminary experimental results using computer

multiplexed holograms, is presented.

1.1. Sampling Theorem for Space-Variant Systems [1]

The output g(x) of a linear system due to an input f(E) is

given by the superposition integral

g(x) = S[f()]

= f f(E)h(x- ,.)d (1-1)
O

where S['] is the linear system operator. The system line-

spread function h(x-&,E) is the system response to an input

Dirac delta, [10]

h(x- , ) = S[6(x-&)] (1-2)

Now, Fourier transforming the Eqn. (1-1) we obtain

G(fx) = Fx(g(x))

= f f()F x[h(x, )]exp(-j2Trf x)dE

= FxFI[f()h(x,) I f  (1-3)
x

Where v and fx are the frequency variables associated

with and x respectively.



3

Defining the system's spatial transfer function as

Hx(f ,C) =' F X[h(x, )], (1-4)

Equation (1-3) may be rewritten as

G(fx) = F (f()ix(fX, )] (1-5)

If f(E) and h(x,U) are band-limited in v and have respective

band widths of 2wf and 2w , then the total band width of

their product is given by

2w = 2 wf + 2wV. (1-6)

Then applying the Whittaker-Shannon sampling theorem [11]

to Eqn. (1-5) we obtain

G(fx) = w f(n)HX(fx' n)exp(-j2xf n )Rect(x),x n n xn 2n (1-7)

=n
where n - and

Rect (x) {1, Ix 1 1/2 (1-8)
{O, Ixi > 1/2

Equivalently,

g(x) = [ f(&n )h(x-En n ) * Sinc(2wx), (1-9)
n

where
Sinc (fx) = F[Rect (x)].

Thus when the input function f( ) and the line spread func-

tion h(x,&) are band limited, the output g(x) of the system

can be computed exactly by sampling the product of the

)i



4

functions f(U) and h(x,E) at intervals of 1/2w and passing

the sum of these sampled products through a suitable low pass

filter.

Although Eqn. (1-9) implies a countably infinite number

of samples of the product of the spatially-varying system

response h(x- , ) and the input function f( ), in practice,

if f(U) is essentially zero outside the interval I I.a and

if the spectrum of f(&)h(x, ) is essentially zero outside

of the interval jvj < w, then the required number of samples

for a good approximation is given by the space-band width

product

N = 4wa. (1-10)

Two possible schemes for implementing this sampled system

representation will be discussed in the following sections.

1.2. Representation of Space-Variant Systems Using Phase

Coded Reference-Beams

A scheme for coherently representing a space-variant

system using the sampling technique described in Section

1.1 is shown in Figures (1-1) and (1-2), [4]. During the

recording step the space variant system is sequentially
sampled in the input plane at N points denoted by i through

i to generate the spread functions hI through hN. The

corresponding reference beam diffuser functions are de-

noted as rI through rN . After Fourier transformation by
14

lenses L1 and L2 the amplitude transmittance t of the
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7

hologram is given by

N (. R 2 (1-11)
t I J(H i + R i) I l-l

i=1

where H. and R. are the Fourier transforms of the functions1 1

hi and ri respectively.

During playback the input function f() is spatially

sampled at the sample locations of the original reference

array to produce the sampled inputs Slri through SNrN where

Si is the sampled value of the input function at 
the ith

location. Then the reconstructed wavefront to the right

of the hologram is given by

N N 2
G'(u) = ( j SjRj)( I IHi + R. 2)

(-12)
N N N2

sRiH. + + 7 [ S2R.IH i + Ri
2

i=l i i=l j=l J  i 1

i#j

The term RilH i + Ri 2 may be expanded as

Ri IHi + Ri 1 2 = RiR Hi + RiHiHi + RiRiHi + RiRiR,

(1-13)

where * represents the complex conjugate operator.

Out of these components only the term RiRiH i is diffracted

by the hologram in the direction of the output plane as a

result of the offset in the reference beam path. Hence

the output after Fourier transformation by lens L is

S2
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given by

N N N
g1 (x) = Z S.h. * (i* ri) + I I Sh * (r r

i~l 1 1 1 i=l j=1 J) 1

i~j (1-14)

where * denotes Correlation and * denotes Convolution.

The desired output g(x) is

N
g(x) = Sihi • (1-15)i=l11

Thus for perfect reconstruction of the output g(x) the dif-

fusers in the reference beam path should have the follow-

ing characteristics.

ri (x) ' r. (x) = 6 (x) for all i,1 1(1-16)

ri(x) * r (x) = 0 for all i and j, i#j

This implies that we need a set of codes for the fabrication

of diffusers having delta like autocorrelations and zero

cross-correlations. However such a set of ideal codes does

not exist. In Chapter 2 the properties of a family of dif-

fuser function derived from a set of codes known as Gold

Codes and previously used in spread spectrum communication

systems are studied through a series of computer simulations.

1.3 Representation of Space-Variant Systems Using a Sampled

Input/Sampled Transfer Function Approach

The sampling theorem of Section 1.1 requires the multi-

plexing of a number of system transfer functions on a single

LI

.. . .o.. .- ... .... .. - - im lI II ll' U ll III...
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hologram, with the capability of independent access to each

of the transfer functions. In Section 1.2 a method for

achieving this independent access requirement by using dif-

fusers in the reference beam paths was discussed. However

when the system line spread function h(x, ) is space limited

in x, an alternate approach in which the transfer functions

are sampled in the frequency plane to multiplex a number

of transfer functions on a single recording medium may be

employed. This is in addition to the sampling in the in-

put plane as required by the sampling theorem of Section

1.1. This technique is described in detail in Chapter 3.

Preliminary experimental results using this method are

presented in Chapter 4.

$I
.. . . . . . . . . . . ..,, . . . . ., , , r . . . . . .. . . . . . .
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CHAPTER 2

* PHASE CODED REFERENCE BEAM APPROACH

In section 1.2 a previously developed scheme for

representing a space-variant system using phase coded ref-

erence beams was presented. It was also shown [Eqn. (1-16)]

that for ideal playback of the system responses the codes

used in the multiplexing step should have delta-like auto-

correlations and zero cross-correlations. In this chapter

the properties of a set of codes known as the Gold codes

are evaluated for use as phase diffusers to multiplex a

number of transfer functions in a single recording medium.

In section 2.1 a method for generatin4 a set of Gold codes

is described. In section 2.2 the correlation properties

of the Gold codes of various lengths are evaluated through

a series of computer programs. The output of a system us-

ing the Cold codes for multiplexing the transfer functions

of a space-variant system are also simulated on the com-

puter.

2.1 Generation of Gold Codes

An analytical technique for constructing a large

family of codes having uniformly low cross-correlations

has been described by Gold (12]. The following steps des-

cribe the technique for generating a set of the Gold codes.

The method is illustrated by an example at the end of this

section.

10



1. Find the order of the primitive polynomial required

by using the equation

L -2n -1 (2-1)

where n is the order of the polynomial and L is the length

of the code. The primitive polynomials for each degree

have been tabulated [13].

2. Select a pair of preferred polynomials f 1(W and f 2 Wx

that result in sequences with low cross-correlations. (This

step is explained in detail while describing the method with

an example.)

3. Find the product of the polynomials obtained in the

previous step to obtain

f'(x) - f 1(W f 2 Wx (2-2)

4. Convert the coefficients of the powers of x in the

polynomials f'(x) to modulo 2 to obtain f(x).

5. Enter these coefficients as connections of a 2n stage

shift register. Here 0 denotes no connection and 1. denotes

the presence of a connection.

6. Select a 2n bit binary seed as input to the shift

register. The output of the shift register is a sequence

of period L and represents a Gold code.

7. To generate another member in the set select a seed

that is not a 2n bit segment of the codes already generated.

Repeating this step a total of (2n 4-1) sequences each of

length (2n _ 1) may be generated.
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It has been shown that the cross-correlations cc(T)

between any pair of these sequences obey the inequality
n+l

jcc(T) I 2 + 1 for n odd,

112 + 1 for n even and n#O mod 4,

where the cross-correlation CC(T) between two codes is de-

fined as

cc(T) = (number of agreements - number of
disagreements),

(2-4)

when two codes with a displacement of T between each other

are compared. The autocorrelation Ac(T) for T # 0 also

obeys the inequality of Eqn. (2-3) and when T - 0 is equal

to the length of the sequence.

Ac(0) = 2n -1 (2-5)

Carter [141 has described a method for generating a family

of codes for n = 0 mod 4, i.e., for n = 4,8,12,16 etc.

2.1.1 Example of Generation of a Set of 511 Bit Gold Codes: The

method just described for generating a family of Gold codes

is illustrated here by an example. In this example a set

of codes, each with a length equal to 511 bits, is generated.

The computer program used for this example along with a set

of 9 codes of 511 bits each generated by the program are

)W



13

given in Appendix A. The following calculations correspond

to the steps described earlier for the generation of the

codes.

1. The order of the primitive polynomial n, is obtained

from Eqn. (2-1) as

511 = 2n -i

n =9.

A table of the primitive polynomials of order 9 is given

in Table (2-1) [13].

In this table the polynomials are listed in octal

notation. For example,

1021 corresponds to 001,000,010,001 and represents

the polynomial 1. x9 + 0.x 8 + O.x7 + O.x6 + O.x 5

+ l.x 4 + 0.x 3 + 0.x 2 + 0.x 1 + 1 i.e., 1 + x4 + x 9 .

The interpretation of the numbers in the first column is

as follows.

Let a be the root of the polynomial 1021. Then

the number 17 in the first column of polynomial 1333 repre-

s 7 1721 17.22 17.2 ,17.2 ,(17.2 5-511)

y( 1 7 . 2 - 5 1 1 ),a(17.27511), and a(17.2 8 - 511) are the roots

of the polynomial 1333. Here the powers of a are taken as

modulo 511.
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1 1021 23 1751 53 1225

3 1131 25 1743 55 1275

5 1461 27 1617 73 0013

7 1231 29 1553 75 1773

9 1423 35 1401 77 1511

11 1055 37 1157 83 1425

13 1167 39 1715 85 1267

15 1541 41 1563

17 1333 43 1713

19 1605 45 1175

21 1027 51 1725

Table 2-1. Primitive Polynomials of order 9.
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2. Now we need to select a pair of polynomials with low

cross correlations. The first polynomial is chosen to be

1021. Thus

f1 (x) = 1 + x4 + x 9 .

Now the second polynomial f2 (x) must be chosen such that

it has the roots n+l

(2=+1)

ioe., the roots of f2 (x) must be a 3 3 . Now we refer to the

ls t column in the Table (2-1) to find the number 33. But

33 is not listed in the table. However 33 may be written

as 544 modulo 511 and 544 = 17.25. Thus the required poly-

nomial f2 (x) is the one which has an entry 17 in the first

column. The corresponding polynomial is 1333 in octal repre-

sentation. Thus,

3 6 7 9

f2 (x) = 1 + x + x + x4 + x6 + x + x.

3. The product of fl(x) and f2 (x) gives

f'(x) = f1 (x)" f2 (x)
1 + x + x 3 + 2x4 + x5 + x 6 + 2x 7 + x 8

+ 2x9 + 2xI0 + x1 I + x 12 + 2x1 3 + x1 5

+ x1 6 + x 1 8 .

4. When the coefficient of powers of x in f (x) is taken

as modulo 2 we obtain
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f(x) = 1 + x + x 3 + x 5 + x 6 + x 8 + x1l + x 1 2 + x 1 5

a
+ x16 + x1 8

5. The coefficients of the powers of x in the above poly-

nomial are entered as the shift register connections to the

computer program given in Appendix A. Thus the shift register

connections read through a data card in the program are

101100110010110101 starting from the highest power of x and

ignoring the constant 1.

6. The computer program selects the seed for the first code

as 000 000 000 000 000 001 and generates the first code

in the set. This seed is then incremented by 1 and the new

seed is checked to verify whether it is a segment of the

code already generated. If so the seed is rejected and a

new seed is obtained by incrementing the value again by 1.

When a seed which is not a segment of the previously gen-

erated code is found then the program computes the next

member in the set of codes. The program is written to gen-

erate a maximum of 25 sequences out of the possible 513

sequences that exist for this order of the polynomial.

The auto-correlation and the cross-correlations of

these 511 bit codes are given by the Eqns. (2-3) and (2-5).

Ac(0) = 511,

IAc(T) < 33 for T 0

and Icc(T)l < 33.
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A program similar to the one just described for generating

127 bit Gold codes is given in reference [15]. A set of

nine codes each of length 127 bits generated by this program

is given in Table (2-2). In this table the binary elements

in the code are entered as O's and 2's. In the next section

the correlation properties of these codes are evaluated

through a number of computer programs.

2.2 Evaluation of Gold Codes as Phase Diffusers in Multiplex

Holography

In this section the results of evaluation of auto and

cross-correlation properties of Gold codes of different lengths

are presented. Also the computer simulated outputs of a space-

variant processor implementing the Gold codes as phase dif-

fusers for multiplexing a number of transfer functions in

a single hologram are given. The computations are carried

out for Gold codes of lengths 127 and 511 bits under the

following different conditions: The Gold codes used as (a)

an ideal phase diffuser with 1800 phase difference between

the elements, (b) an amplitude diffuser with transmittance

values of 0's and l's, (c) a non-perfect phase diffuser with

phase difference between the elements not equal to 1800

and (d) an ideal phase diffuser illuminated by a spherical

wave front instead of a plane wave front.

The auto correlation of a function r I may be calcu-

lated using the relation
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Table 2-2. Set of nine 127 bit Gold codes.
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Rll= rl* r 1  F(R'1 *R} , (2-6)

where * represents correlation and * represents the conju-

gate operator and rI , R are the Fourier transform pairs

defined as

R1 = F{rI } . (2-7)

Similarly the cross-correlation between the functions

r1 and r2 may be obtained from the relation

R = r * r 2 = F{RI'R*} , (2-8)

where R2  F{r 2 } (2-9)

If the functions r1 and r2 have spatial widths of wI and

w2 respectively then the functions RlI and R12 have spatial

widths of wll and w12 given by

width of = 2W1 and

A (2-10)
Wl2 = width of R W + W

Thus in computer simulations sufficient allowance must be

made to accommodate the larger size of the output.

Similarly the output of a space variant processor

implementing the phase coded reference beam technique for

multiplexing may be simulated by computing the terms in

the Eqn. (1-14). Again if the impulse response hI has a
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spatial width of Wh, the width of the term h* r-k r2 is

given by

0width of the termh * r*r2 =Wh + W1 + W2

(2-11)

Thus in the simulation of multiplex holography using

Eqn. (1-14) the size of the output array must be made suf-

ficiently large as given by the above equation.

2.2.1 Results of Evaluation of Gold Codes as Perfect Phase

Diffusers: A program for the calculation of the auto-

correlation and the cross-correlations of a set of nine 127

bit Gold codes is given in Appendix B. Another program to

simulate the output of a processor using these codes as

phase diffusers for multiplexing is given in Appendix C.

In these programs the size of the output array is taken to

be 128 elements. Thus in order to satisfy the Eqn. (2-11)

the widths of the codes r1 and r2 and the width of the im-

pulse responses are all made equal to 42 bits. Thus in these

programs only the central 42 bits out of the 127 bit codes

are used in the computations. (Although it was possible to

use 64 bits in the program SPACEVAR of Appendix B, only 42

central bits are used so that the results of the two pro-

grams may be compared.) The program SPACEVAR computes the

autocorrelation of the central 42 bits of a 127 bit code

and the cross-correlations of these 42 bits with the central
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42 bits of the remaining codes in a set of 9 codes, using

the Eqns. (2-6) and (2-8). The magnitudes of the outputs

are normalized with reference to the peak of the auto-cor-

relation. The outputs are plotted to a width of 2.56 inches

and a height of 2.5 inches. The resulting plot is shown in

Fig. (2-1).

Figure (2-1)a is the plot of auto correlation of mask

1 and the Figs. (2-1)b through i are the cross-correlations

of mask 1 with the masks 2 through 9. Note that the cross

correlations have comparable large magnitudes and hence we

may expect poor reconstruction of the impulse responses when

these codes are used for multiplexing the system transfer

functions. The program MPXHOLO of Appendix C simulates the

output of a system when two transfer functions are multi-

plexed using the Gold codes as phase diffusers. The pro-

gram reads two impulse responses representing a space-variant

system and multiplexes their transfer functions on a single

composite array using a different Gold code as phase encoder

for each of the responses. Thus a composite transfer func-

tion hologram is generated. This hologram includes only

the terms that result in an output in the output plane as

explained in Section 1.2. The output of the processor when

the composite hologram is accessed by a reference beam

encoded by a duplicate of the code used for recording is

simulated by this program. The program also simulates the
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output when only one of the transfer functions is recorded

and played back using a Gold code. This simulation is done

to assess the distortion in the impulse responses due to

non ideal auto correlation of the codes. The program plots

the outputs of these simulations as well as the impulse

responses used. The results of these simulations for

three sets of impulse responses are shown in Figs. (2-2),

(2-3) and (2-4). The impulse responses used in the first

simulation consists of two disjoint inputs as shown in Figs.

(2-2)a and b. The outputs when the transfer functions of

these impulse responses are recorded and played back using

a Gold code one at a time are shown in Figs. (2-2)c and

d. Note that due to non-ideal auto-correlation of the Gold

codes, the output impulse responses are considerably dis-

torted. This distortion is due solely to the auto-corre-

lation and the effects of cross correlation are not included.

Figures (2-2) e and (2-2)f show the outputs when both the

transfer functions are multiplexed in a single array and

then an attempt to retrieve the impulse responses individually

are made. These outputs are distorted much more than the

outputs of Figs. (2-2)c and d because of the cross talk be-

tween the holograms due to non zero cross-correlations in

addition to the non ideal auto-correlations of the Gold

codes. Finally the result when both the transfer functions

are accessed simultaneously by two phase coded reference

L.
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1

e(g)

(e) (f)

(C) (d)

(a) (b)

*Figure 2-2. Simulation of multiplex holography using
42 central bits of 127 bit Gold codes.
(Disjoint impulse responses.)

OP
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(g)

(e)(f

(C) (d)

+9 -9

(a) (b)

Figure 2-3. Simulation of multiplex holography using
42 central bits of 127 bit Gold codes
(overlapping impulse responses).
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(g)

(e) f)

(C) (d)

(a) (b)

Figure 2-4. Simulation of multiplex holography using 42
central bits of 127 bit Gold codes. (Delta
like impulse responses.)
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beams is shown in Fig. (2-2)g. The corresponding outputs

when two overlapping impulse responses, one with a positive

amplitude and the other with a negative amplitude, as shown

in Figs. (2-3)a and b, are used as inputs to the simulator

are shown in the Figs. (2-3)c through g. In the next simu-

lation two impulse responses with values similar to delta

functions are used as inputs and the corresponding outputs

are shown in Fig. (2-4). Note that in this case the out-

puts, although containing a substantial number of noise

terms, have a term that may be attributed to the desired

output. These simulations show that the undesired terms

in the correlations of the 42 central bits of the 127 bit

codes are too large and hence result in a poor playback.

This is because an arbitrary segment of the Gold code does

not exhibit the same degree of randomness as the full code.

Thus further simulations to study the correlation properties

of the 127 bit codes when the entire length of the codes

are used for multiplexing were carried out. This was done

by altering the size of the arrays in the computer program

to accommodate the larger size of the outputs as determined

by the Eqns. (2-10) and (2-11). The results of these simu-

lations are shown in Figs. (2-5) through (2-8). Figure (2-5)

shows the auto and cross-correlations of the 127 bit Gold

code. A comparison of this output with that of Fig. (2-1)

indicates a substantial reduction in the magnitudes of the

undesired components. The impulse responses used in the

simulation of multiplex holography using all the 127 bits
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(g)

(e)

(c) (d)

(a) (b)

Figure 2-6. Simulation of multiplex holography using
127 bit Gold codes (disjoint impulse re-
sponses).
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(g)

(e)(f

(C) (d)

+9 -9

(a) (b)

Figure 2-7. Simulation of multiplex holography using
0 127 bit Gold codes (overlapping impulse

responses).
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(g)

(e)(f

(C)

(a) (b)

Figure 2-8. Simulation of multiplex holography usingC
127 bit Gold codes (Delta like impulse
responses).
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of the Gold codes are similar to the ones used in the simu-

lation when only a part of the codes was used in the compu-

tation. Note that the outputs when the impulse responses

are delta like functions have noise terms at much lower

magnitudes compared to the outputs in Fig. (2-4). Finally

the results of evaluation of correlations and simulation of

multiplex holography when Gold codes of length 511 bits

were used are shown in Figs. (2-9) through (2-12). The

Gold codes used in these computations are the outputs of the

program CODE described in Section 2.1. Here again note that

the magnitudes of the undesired terms in the correlation

outputs are much smaller than the outputs for codes of smaller

lengths. There is also a substantial improvement in the out-

put when delta function like impulse responses are used in

the simulation of multiplex holography compared to the out-

puts using smaller length codes. However there is no im-

provement in the outputs when the impulse responses are

broader. This may be attributed to the fact that although

the magnitudes of the individual noise elements in the

correlation outputs are small, the number of such terms are

large with larger length of codes and their collective

contributions when convolved with the impulse responses may

be quite high. A major problem may be the fact that the Gold

codes, unlike the maximal length cyclic codes from which

they are derived, are not balanced to have the same number

of +i's and -l's. Thus the expected value of a bit is not
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(e)(f

(C) (d)

(a) (b)

*Figure 2-10. Simulation of multiplex holography using
511 bit Gold codes. (Disjoint impulse
responses.)
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(g)

(e)

(C) (d)

+9 -9

(a) (b)

Figure 2-11. Simulation of multiplex holography using
511 bit Gold codes (overlapping impulse
responses).
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(g)

(e)(f

(C) (d)

(a) (b)

Figure 2-12. Simulation of multiplex holography using
511 bit Gold codes (Delta like impulse
responses).
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zero, and there is a built-in bias. The outputs of these

simulations suggest that the method of space-variant

system representation using phase coded reference beams is

more suitable for space-variant systems having narrow im-

pulse responses. An example of such a system is a magnifier

which transforms points in the input plane to points in the

output plane.

All the simulations described so far have been done

under the assumption that the Gold code masks used in the

system for recording and playback are pure phase masks with

exactly 1800 phase difference between the elements in the

code. However it is generally difficult to fabricate such

a perfect phase mask. For this reason an evaluation of the

performance of a system using non perfect phase masks and

binary amplitude masks was carried out and the results are

presented in the next subsections.

2.2.2 Results of Evaluation of Gold Codes as Amplitude

Masks and Non Perfect Phase Masks: An amplitude

mask of a binary Gold code may be easily fabricated using

any high contrast copy film. The transmittance of these

masks has values of 0 and 1 instead of +1 and -1 for a per-

fect phase mask. The auto-correlation and the cross-corre-

lations of such amplitude masks with code lengths of 127

bits are shown in Fig. (2-13). Note that the magnitudes

of the correlation terms are very large toward the center

of the output array and then tail off rather slowly. The

outputs of simulation of multiplex holography for the same
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inputs used in the case of pure phase masks are shown in

Figs. (2-14) through (2-16). Comparison of these outputs

with those of Figs. (2-5) through (2-8) reveals that the

phase masks are much superior in performance to amplitude

masks. However as mentioned earlier it is difficult to fab-

ricate phase masks with phase difference of exactly 180

degrees between the elements. Thus a study was made to

determine an acceptable level of tolerance in the value

of the phase difference. The program SPACEVAR of Appendix

B was modified to account for non perfect phase masks with

phase differences of 1720, 1620, 1500, and 1200. The

output of auto-correlation of a 127 bit mask with itself and

the cross-correlation with two other 127 bit masks were

computed and plotted. The plots for various degrees of non

perfectness is shown in Fig. (2-17). From these outputs

it may be concluded that it is desirable that the phase

differences between the elements of the code should be

within 10% of 1800. In the next subsection the results

of evaluation of Gold codes when a spherical wavefront is

used during recording and playback are presented.

2.2.3 Results of Evaluation of Gold Codes Illuminated by

Spherical Wavefront: It has been reported [16] that

the use of spherical wave illumination instead of plane

wave illumination in an optical processing system imple-

menting the phase coded reference beam multiplexing tech-
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(g)

(e) (f)

(C) (d)

(a) (b)

Figure 2-14. Simulation of multiplex holography using
127 bit amplitude masks (Disjoint impulse
responses).
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(g)

Ai

(e) (f)

(C) (d)

(a) (b)

Figure 2-15. Simulation of multiplex holography using
127 bit amplitude masks (overlapping impulse
responses).
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(g)I

II

(a) (b)

Figure 2-16. Simulation of multiplex holography using 127
bit amplitude masks (Delta like impulse re-
sponses).
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A'Il_

(d) Phase difference =1200

(c) Phase difference - 1500

(b) Phase difference = 1620

(a) Phase difference = 1720

Figure 2-17. Autocorrelation and crosscorrelation of 127

bit Gold codes used as non perfect phase
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nique results in a reduction in the magnitudes of the cross-

talk terms during playback. A computer program SPHWAVE

given in the Appendix D was used to compute the auto and

cross-correlations of two 127 bit masks when illuminated

by spherical waves of different values of chirp, i.e.,

different radii of curvature and the width of mask.

The method for calculating the chirp at each element

of the mask is shown in the Fig. (2-18). Let R be the radius

of curvature of spherical wave in millimeters, and let w

be the width of the mask in millimeters; the path difference

At between the wave front at a point n elements from the

center of the array is then given by

At =R 2+(2W) 2 -R (2-12)

N

where N is the total number of elements in the entire array.

The phase difference 8 in radians at the center of

the element with reference to the center of the array when

using an illumination of wavelength equal to X millimeters

is given by

e ( n) 2r (2-13)

where n is an integer chosen such that 0 < e < 27T.

At optical wavelengths the phase angle e changes very

rapidly along the width of the phase mask. There will be
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many complete cycles of phase change within each element

of a 127 bit mask even for such small mask sizes as 3 mms.

For this reason it is necessary to breakup each element

of the code into several subcells as is done in the pro-

gram. Then the value of each subcell is determined by the

value of the originating element, corrected for the phase

change due to the shperical wave front at the center of the

subcell. The auto-correlation output of a 127 bit code and

its cross-correlations with another 127 bit code for differ-

ent values of chirp as determined by the radius of wavefront

and the width of mask are shown in Figs. (2-19)a and (2-19)b

respectively. These plots are scaled in width to account

for the variation in the size of the masks. The heights

are scaled so that the areas under each of the auto corre-

lation peaks are equal in order to establish a criterion

for comparison. Note that the illumination by a spherical

wavefront has a tendency to reduce the amount of undesired

terms in the correlation that are located away from the cen-

ter of the peak of the auto-correlation. The terms near the

center are not changed appreciably. Also note that as the

radius of wavefroat gets very large the correlation outputs

approach that of a mask illuminated by a plane wave as ob-

tained in Fig. (2-1). Further simulations are necessary

to quantitatively establish the exact amount of improvement

in the output that may be obtained by using the spherical
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(iv) R =15, W =2. 0

(iii) R =12.5, W 3.81

(ii) =R15.0, W =3.81

(i) R =999.0, 1-= 3.81
(a) (b)

Figure 2-19. Autocorrelation and crosscorrelations of 42
central bits of 127 bit Gold codes illuminated
by a spherical wave of radius R and width of
mask W.
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(Viii) R =15.0, W =1.0

(vii) R =8.0, W = 2.0

(vi) R =10.0, W = 2.0

(V) R =12.5, W =2.0

(a) (b)

Figure 2-19 continued.
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wave front as well as for determining the optimum relations

between the width of the mask and the radius of curvature

of the spherical wave front.

The results of the computer simulations presented

in this chapter are useful in choosing a space-variant

system for representation using the phase coded reference

beam approach. The need for a good phase mask with phase

differences between the elements close to 1800 was also

established. A technique for fabricating a two dimensional

phase mask using Dichromated gelatin is described in

Appendix G.

In the following two chapters an alternate multiplex-

ing technique for generating a composite transfer function

hologram is presented



CHAPTER 3

* SAMPLED INPUT/SAMPLED TRANSFER FUNCTION APPROACH

3.1 Space Division Multiplexing of Transfer Functions

Consider a system sampled at N points in the input

plane, as determined by the sampling theorem of Eqn. (1-10).

As a result we have N line spread functions represent-

ing the system. Thus after Fourier transformation there

are N transfer functions in the holographic plane to be

multiplexed in a single recording medium. When the system

line spread functions are space limited, it is possible to

sample their transfer functions at a rate determined by

the modified version of the Whittaker-Shannon sampling

theorem (111 and generate a composite hologram containing

the samples of all the transfer functions. A typical

space limited line spread function might be as shown in

Fig. (3-1). The maximum spatial width of this function

is 2X where x is the larger of the values on either side
M M

of the axis of the optical system. Let xM be the maximum

of {xi} for all i = 1,2,...N. Then the maximum samplingm

interval required in the transfer function plane is given

by the Whittaker-Shannon sampling theorem:

A fx (3-1)

where Afx has the dimensions of spatial frequency; or in

terms of linear dimensions,

50
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h (X-C, C)

0 X

Figure 3-1. Typical line-spread function.

AV

31 1 .p

I H

b

3 '~

H4 
A

Figure 3-2. Typical arrangement of samples
of transfer functions on hologram,
when N = 3 and M = 4.
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AU = XfAfx (3-2)

Where X is the wave length of coherent light, f is the focal

length of the Fourier transforming lens and AU is the samp-

ling interval in the holographic plane in units of length.

Since we have N transfer functions to be multiplexed, the

width of each individual sample is given by

Av = AU. (3-3)

N

Again if the magnitudes of the transfer functions are

essentially zero beyond the width lul _> b/2, the transfer

functions may be approximately represented by limiting the

number of samples to

b 2bx 

(

M =f AU = f , (3-4)
AU A

instead of the infinite number of samples required by the

sampling theorem.

An example of sampling a transfer function and the

spatial distribution of samples in the holographic plane,

for N = 3 and M = 4, is shown in Fig. (3-2). Each sample

is marked as H., when i represents the ith transfer func-

tion being multiplexed and j represents the jth sample of

the ith transfer function.

3.2 An Optical Recording And Playback Scheme

A scheme for implementing the multiplexing technique

• ,.
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just described is shown in Fig. (3-3). During recording,

a binary mask with the width of each of the N transparent

areas equal to Av spaced at intervals of AU is placed

immediately in front of the recording medium. This mask

samples the transfer function hologram at intervals of

AU. The mask is moved by a distance of Av after recording

each hologram. Thus at the end of recording and process-

ing, assuming that the resultant transmittance after pro-

cessing is proportional to intensity, the transmittance

of the hologram is given by

N
t(u) = [JH'(u) + R(u)12] [Rect(u v * Comb(u-iAv)]i=l

(3-5)

where * represents convolution,

A0
Comb(x) = I 6(x-n) (3-6)

n=-co

and Rect (x) is as defined in equation (1-8).

For playing back this multiplexed hologram the scheme

is as shown in Fig. (3-4). The binary mask used in the

recording step is now replaced by a multiple input function

transparency with transmittance equal to f(Ei ) at all M

points that are directly in front of the samples of the

ith transfer function. The transmittance of this trans-

parency may be represented as

N
s(u) = [ f( i)Rect(U_) * Comb(uiAv) . (3-7)i=l AU



54

0

0

4-)

0

7 0

0

1.4

0

41.

z0
U '4-4

cr (
L < d-

XO



055

S0
C0

-4e

x 0

060
0

..4

06

E$



56

When this transparency is illuminated by the reference

beam R, the reconstructed wavefront to the right of the

hologram is given by

G(u) = R(u) S(u) t(u)

= R(Hi + RI 2 )f(&i)Rect(u-v) Comb U "v)

i=l AV Mi

(3-8)

Now out of the four terms in the expansion of RIH
i + RI 2

(Eqn. (1-13)) only the term RR Hi is diffracted by the holo-

gram in the direction of the output plane as a result of

the offset in the reference beam. Thus the output after

Fourier transformation by the lens L2 is given by

-1 N. u u-iA vg'(x) = F[ H RRf( i)Rect( _ ) -Comb(
i AU

N
= Kh. * (r * r) * [f( i ) s i n c ( x (CombxM

(3-9)

where * represents correlation.

Here K is a scaling factor due to Fourier transforma-

tion.

In this equation the term r * r approaches a delta func-

tion if the reference source r approaches a delta function.

The term Sinc(2-) is due to the finite size of the sample

width in the frequency plane, and approaches a constant in

the limit as v-0. Finally the term Comb( 2X) is present

.. .... .. .. .. , ... .. .. I . .. .. . .II - - / . rl " -2Ix[ Mi
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because of the sampling carried out for multiplexing the

holograms. Thus under the assumption that the width of each

sample 6v is small, and that r is a delta function, the

equation for g' (x) is given by

N
g'(x) i f( i)hi * Comb(2x ) (3-10)

The required output g(x) is

N

g(x) = f( i) i (3-11)i=l13-1

Hence to recover the output g(x) from g'(x) we need a

mask in the output plane with a slit which passes one of

the multiple images.

All the mathematical derivations carried out so far

has been in 1-D for clarity of presentation. Extensions

to two dimensions are straightforward.

This method of multiplexing does not require the

multiple reference beams that were necessary in the encoded

reference beam approach described in Section 1.2. However

the need exists for preparing a multiple input function mask

for the spacelimited input f( ). This mask is used during

the playback as explained in the previous paragraphs. This

mask generates coherent replications of the input function

to illuminate the hologram. Some of the schemes for

achieving this objective are described in Section 3.4. In

the next section the results of 1-D computer simulations
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carried out to verify the sampled transfer function multiplex-

t ing technique are described.

3.3 One-Dimensional Computer Simulations

The computer program used to simulate the sampled

transfer function multiplexing technique is given in

Appendix E. In this simulation the number of samples in

the input plane is taken as N = 4. Thus there are four

transfer functions to be multiplexed in a single hologram.

A one dimensional array of 128 elements is used to repre-

sent each impulse response. This array is used as the in-

put to the discrete Fast Fourier Transform routine (FFT)

to generate a 128 element array of Fourier components. This

transfer function array is sampled at an interval of four

elements and the samples are stored at their corresponding

positions in another array representing the composite holo-

gram. The above steps are repeated for all the four impulse

responses, resulting in a final composite array of 128 ele-

ments. This composite array is played back by using it as

the input to a second Fourier transform routine. As the

composite array is not multiplied by any term representing

the input function, the result after Fourier transformation

should be the sum of the individual impulse responses. In

fact this simulation is equivalent to a situation when the

input is a constant for all the impulse responses. The

output of the system when the transfer functions are accessed

one at a time is also simulated.
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The four impulse responses used in this experiment are

shown in Fig. (3-5a). Note that since we have four trans-

fer functions to be multiplexed in a composite array of 128

elements, the maximum extent xM of any of these impulse re-

sponses should be less than 16 elements on either side of

the center of the array, i.e., 2 xM < 128/4 = 32 elements;

otherwise aliasing problems will result in the output plane

when the multiplexed transfer function array is played back.

The magnitudes of the transfer functions of each of these

impulse responses are shown in Fig. (3-5b). These transfer

functions are sampled by selecting the ist, 5 th, 9th ....

elements of the first transfer function, 2nd, 6th .... ele-

ments of the second transfer function, 3rd 7th .... elements

of the third transfer function and 4th 8 th .elements of

the last transfer function. These samples are placed in

their respective positions in another composite array. The

magnitude of the elements in this array is shown in Fig.

(3-6a). This array is then Fourier transformed and the out-

put is shown in Fig. (3-6b). This output represents the

system output when illuminated by an input function f(s)

which is a constant over all the sample points in the in-

put plane. Note that the output, which is a sum of all the

four impulses responses, is replicated four times in the

output plane. This is because of the Comb (x/2xM) term in

Eqn. (3-10). The coordinate reversal is due to the consecu-

tive application of two Fourier transformation operations. Next,
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to simulate individual access of each impulse response, the

samples belonging to each transfer function are recovered

from the composite array and are placed in another array.

The plot of the magnitudes of the elements in this array

is shown in Fig. (3-7a). The results of Fourier trans-

forming these arrays are shown in Fig. (3-7b). This simu-

lation is equivalent to the situation when the input func-

tion f( ) has a magnitude of 1 at the input sample point

corresponding to the impulse response being accessed and

zero at all the other sample points. Again note that the

output is replicated four times in the output plane. This

program was written in the Fortran 63 language for use with

a CDC 1604 Computer and Cal-Comp drum type plotter.

3.4 Schemes for the Generation of Multiples of the Input

Function

In this section some of the schemes for generating

multiple images of the input function are briefly described.

3.4.1 Multiple Image Transparencies: Multiple copies of

the sampled values of the input function f( ) are prepared

on a film using a step-and-repeat process or other methods.

A typical transparency for a given function f(E) is shown

in Fig. (3-8). The disadvantages of this method are (a)

Separate masks are required for each of the input functions,

(b) the process is slow.
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3.4.2 Multiple Imaging Using Beam Splitters: An array of

beam splitters may be set up to generate multiple images

of the input function. The requirement, however that all

the images should have the same amplitude and be coherent

with one another requires high precision in the values

of transmittance and reflectance of each of the elements

as well as in the optical path lengths.

3.4.3 Multiple Imaging Using Phase Holograms: The use of

phase holograms to produce equally bright multiple images

in the fabrication of integrated circuits has been reported

[17]. Similar techniques to produce multiple coherent images

may be possible.

3.4.4 Use of Fiber Optic Elements: Bundles of equal lengths

of fiber optic elements may be arranged as shown in Fig.

(3-9) to generate multiple images of the sampled input func-

tion when illuminated by a plane wave.

3.4.5 Use of Liquid Crystal Devices: The property of liquid

crystal devices by which local changes in the periodicity

of a phase grating becomes proportional to the light

variation incident on the device has been used in optical

computing [18]. This property may be used in conjunction

with other techniques described earlier to generate coherent

multiple images.
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In the next chapter the experimental results obtained

using 2-D computer multiplexed holograms are presented.



CHAPTER 4

EXPERIMENTAL RESULTS USING

COMPUTER MULTIPLEXED HOLOGRAMS

The technique of representing a space-variant system

using a thin recording medium has the advantage of allow-

ing computer generation of the system transfer function

hologram instead of using the optical recording schemes

described in section (3-2). In this chapter the results of

2 experiments using computer multiplexed holograms are pre-

sented. The experiments were conducted to verify the tech-

nique of multiplexing the transfer functions using the samp-

ling method described in Chapter 3. in these experiments

the number of samples N in the input plane was taken to be

2 in each dimension, thus requiring the multiplexing of N x N

4 transfer functions on a single hologram.

4.1 Computer Generation and Playback of the Multiplexed

Hologram

The computer program used to generate the transfer

function hologram and to simulate the playback of the system

is given in Appendix F. In this program a 2-D array of

64 x 64 elements is used to represent an impulse response.

The four impulse responses are Fourier transformed using

the discrete Fast Fourier Transform (FFT) subroutine to

result in four transfer function arrays of 64 x 64 elements

each. These four transfer function arrays are multiplexed

68
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into a single composite array of 64 x 64 elements by select-

ing every alternate element from each of the arrays in both

direction as shown in Fig. (4-1) i.e., the lst, 3rd, 5 th,

etc. element from the ist , 
3rd, 5th, etc., rows of the trans-

fer function H, are selected and placed in their correspond-

ing positions in the composite array. Similarly the 2nd,

4 th, 6th, etc. element from the ist , 3rd, 5th, etc. rows

of the transfer function H2, ist, 3rd, 5th, etc. elements

from the 2nd, 4th, 6th, etc. rows of the transfer function

H3 and 2nd, 4th, 6th, etc. elements from the 2nd, 4th, 6th,

etc. rows of the transfer function H4 are selected and are

placed in their corresponding positions in the composite

array. Thus in this scheme the sampling interval in the

transfer function plane is 2 elements. This implies that

the maximum size of the impulse response in either direc-

tion from the center of the array must be less than 64/(2x2)

= 16 elements in order to satisfy the sampling theorem.

In general if N transfer functions are to be multiplexed

in each dimension the maximum extent of the impulse re-

sponse from the center of the array is given by

_b

XM = - elements, (4-1)

where b is the number of elements in the array in each

dimension. If this condition is not satisfied aliasing

errors will result during the playback step.
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(a) Selection of samples from the transfer functions.
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(b) Position of components from the fc" - transfer
functions in the composite array.

Figure 4-1. Scheme for computer. multiplexing the transfer
functions.
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At the end of the multiplexing step we have one com-

posite array of 64 x 64 elements representing the multi-

plexed hologram. The magnitude and phase of the elements

in this array are plotted using Burckhardt's 3 vector method

(19] in cells of size 0.15" x 0.15", resulting in a plot of

size 9.6" x 9.6". Since the resolution of the plotter was

limited to 0.01" the magnitudes of the elements in the array

are quantized to a total of 15 levels. Thus all elements

whose magnitudes are less than 1/15th of the magnitude of

the largest element in the array are set to zero. These

quantized vectors are resolved into components along 3

vectors 1200 apart as shown in Fig. (4-2). Each of these

components are represented on the plot by three subcells

of 0.05" width. The height of these subcells is propor-

tional to the magnitude of the component. The plot of one

such cell corresponding to the element having magnitude

and phase as shown in Fig. (4-2) is given in Fig. (4-3).

The plot of the encoded sampled transform array is

reduced to a size of 0.4" x 0.4" using high contrast copy

film and is used in the optical system shown in Fig. (4-4).

The optical playback system consists of lens L1 placed at

a distance of one focal length from both the hologram and

the output plane. The hologram is placed in the plane U

and the output, after Fourier transformation by lens LI ,

appears in the X plane. A photograph of the optical setup

is given in Fig. (4-5). In this setup an additional lens is
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used to project enlarged images in the output plane. The

entire hologram is illuminated by a plane wave of constant

amplitude. This is equivalent to the situation when the

input function f( i) in Eqn. (3-10) is constant for all the

impulse responses hi, i = 1,2,3,4. The output is observed

as an intensity distribution in the output plane. The

computer program also simulates the playback of the optical

system. This is done by using the composite transfer func-

tion array as the input to the Fast Fourier Transform routine

and the magnitude of the output is plotted as before.

Next, to simulate the playback of only one impulse

response the components belonging to one of the transfer

function from the composite array are selected and placed

in their respective position in another array with magni-

tudes of all other elements set to zero. A hologram of this

transfer function array is prepared as before using a high

contrast copy film. This hologram is used in the optical

system of Fig. (4-4) and the output is observed as an in-

tensity distribution in the output plane. This is equiva-

lent to the situation when the input function f( i) in

Eqn. (3-10) is nonzero at only the point corresponding to

the impulse response hi being accessed and zero at all other

points. In the following sections the results obtained

using this computer multiplexing technique are presented.
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4.2 Experimental Results Using Disjoint Impulse Responses

The four disjoint functions representing the impulse

responses used in this experiment are shown in Fig. (4-6).

Note that the maximum extent of these impulse responses in

either x or y direction with respect to the center of the

array is less than 16 elements and hence satisfies the con-

straints imposed by Eqn. (4-1). These impulse responses are

used as inputs to the computer program described in the

previous section. The composite hologram generated by the

computer is shown in Fig. (4-7). The result of playback of

this hologram in the optical system of Fig. (4-4) is shown

in Fig. (4-8). The binary mask shown in Fig. (4-4) was not

used while recording this output. The multiple outputs

seen in this output are due to two reasons. First, as a

result of the sampling in the transfer function plane

multiple images are produced in the output plane as illus-

trated by Eqn. (3-10). Second, the Fast Fourier Transform

subroutine assumes that the object at the input is one

period of a periodic function in both x and y directions so

that the output is limited to the size of one period of the

array. The result of optical playback using the binary

mask as shown in Fig. (4-4) to pass only one of the multiple

images is shown in Fig. (4-9). Note that this output is a

sum of all the four impulse responses. This simulation is

equivalent to accessing all the impulse responses by an
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Figure 4-8. Output of the Optical System
when the hologram of Fig. 4-7
is played back.
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Figure 4-9. Enlarged output of the Optical System
when the hologram of Fig. 4-7 is played
using a binary mask to pass only one of
the multiple images.
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Figure 4-11. Output of the Optical System when
only one of the impulse responses
of Fiq. 4-6 is played back.

Figure 4-12. Output (4f the Optical System when one
of the impulse responses of Fig. 4-6
is playe-d back usinq a binary mask to
pass onl one of the multiple images.
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input function which is constant at all the sample points

in the input plane. The result of a computer simulation of

the playback is shown in Fig. (4-10). As explained in the

previous section the components belonging to one of the

transfer functions are selected from the composite array and

a hologram is prepared. The result of playback of this holo-

gram is shown in Fig. (4-11). Again an enlarged output of

one of the multiple images in the output plane is shown in

Fig. (4-12). This simulation is equivalent to the situation

when the input function accesses only one of the impulse

responses.

4.3 Experimental Results Using Overlapping Impulse Responses

The impulse responses used in this experiment are shown

in Fig. (4-13). The first and second functions are made up

of two disjoint right angle triangles with the values of

elements within these triangles equal to -1 and zero every-

where else. Similarly the elements within the inverted

triangles of the 3rd and 4 th function have a value of +1. It

is clear that the set of functions 3 and 4 partially overlap

the set of functions 1 and 2. Thus when all the functions

are added together a central hexogonal area of zeros are

generated surrounded by a star like outer pattern. This ex-

periment was conducted to verify whether the property of

coherent addition is retained when the transfer functions

are multiplexed using the sampled transfer function approach.
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Figure 4-15. output ofthe optical System when the
holoqramr of Fig. 4-14 is played back.
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Figure 4-17. Output of the Optical System when
only one of the impulse responses
of Fig. 4-13 is played back.
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The plot of the composite transfer function is shown in

Fig. (4-14). The result of optical playback of this com-

posite transfer function is shown in Fig. (4-15) and the

computer simulated output is shown in Fig. (4-16). Note

that the output contains a central hexogonal array of zeros

and hence verifies the coherent addition property. The

result of playback of one of the impulse responses is

shown in Fig. (4-17).

4.4 Multiplication of Impulse Responses by a Phase Function,

It was mentioned in section 4-1 that some of the terms

in the composite transfer function array are set to zero if

their magnitude is less than 1/15 times the magnitude of

the largest component in the array. This results in the

loss of many terms especially when the transfer function has

a dominating term of very large magnitude (usually the zero

frequency term). This results in a computer hologram plot

with only a few terms. The playback of such a hologram re-

sults in poor reconstruction. To circumvent this problem

the impulse responses are multiplied by a phase function

having magnitudes of +1 and -1 arranged in a checkerboard

pattern as shown in Fig. (4-18). In general this operation

* spreads the components in the Fourier plane more evenly and

the plot of the hologram after quantization contains more

components. However multiplication of the impulse responses

by this phase function will not result in any change in the
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Figure 4-20. Output of the Optical System when the
hologram of Fig. 4-19 is played back.
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observed distribution in the output plane during playback

since the output is observed as an intensity distribution.

Also a better reconstruction is obtained as more components

are present in the hologram. The plot of the composite

transfer function corresponding to the impulse responses

of Fig. (4-6) using the phase mask as premultiplier is shown

in Fig. (4-19). One may compare this plot with that of Fig.

(4-7) which was produced without premultiplication by the

phase mask. The result of optical playback of this holo-

gram is shown in Fig. (4-20). The result of computer simu-

lation of this output is shown in Fig. (4-21). Similarly

the plot of the composite transfer function, the optical

playback of the composite transfer function and the com-

puter simulated output when the impulse responses of Fig.

(4-13) are multiplied by the phase function of Fig. (4-18)

are shown in Figures (4-22), (4-23), and (4-24) respectively.

The block like structure of the output pattern could be re-

moved by using a random phase premultiplexing mask rather

than a periodic one.

4.5 Computer Multiplexing Using Low Pass Filtered Transfer

Functions

When the magnitudes of the high spatial frequency com-

ponents of the transfer functions representing the space-

variant system are small, the quantized composite transfer

function array contains components only in the central region.
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: of Fig. 4-13 are multiplied by the phase mask
?;. of Fig. 4-18.
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the hologram of Fig. 4-22 is played
back.
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In such a situation a different scheme for selecting the

samples from the transfer function arrays for multiplexing

maybe employed. In this scheme the central 32 x 32 elements

from each of the transfer function arrays H1 through H 4 are

selected and repositioned in a composite transfer function

array of 64 x 64 elements as shown in Fig. (4-25). This

scheme is different from the one described in section (4-1)

in which alternate elements in both directions were selected

as samples and were placed in their corresponding positions

in the composite array. The present scheme is equivalent to

low pass filtering the transfer functions and hence infor-

mation about high frequency components, such as sharp edges,

is lost. Since all the elements in the center of the trans-

fer function array are used, however, effectively no sampling

is being done in the Fourier plane, and hence the restriction

on the size of the impulse responses given by Eqn. (4-1) is

not valid. As such the impulse responses need not be space

limited and may extend up to the edge of the array repre-

senting the impulse responses. However as the number of

transfer functions being multiplexed increases, the size of

the central array passed by the low pass filter becomes

smaller and results in the loss of more and more components.

In general if N transfer functions are being multiplexed in

each dimension, the size of the central square array U in

each dimension passed by the low pass filter is given by
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H3 H4

(a) Low pass filtering of transfer functions: central
32 x 32 elements are selected from each transfer
function.

- ~64-

64

(b) Repositioning of the selected elements in the
composite array.

Figure 4-25. Generation of composite transfer function
array using low pass filtering technique.
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U (4-2)
N

where b is the size of the composite transfer function

array. Also, since the elements from the central portion

of the transfer function array are repositioned throughout

the composite array as shown in Fig. (4-25) the spatial

frequency scale in the composite transfer function is changed

by a factor of N relative to the spatial frequency scale of

the individual transfer functions. This results in a re-

duction in the size of the impulse responses during playback

by the same factor. This multiplexing scheme is suitable for

computer multiplexing only as it requires repositioning of

elements and it is not possible to device a simple optical

equivalent of this multiplexing technique for recording

the composite hologram. An experiment to verify this multi-

plexing method was carried out using the impulse responses

shown in Fig. (4-26). Note that the impulse responses ex-

tend upto the edges of the array in both x and y directions.

The composite hologram generated by the computer is shown

in Fig. (4-27). The result of a computer simulation of the

playback of this composite transfer function is shown in

Fig. (4-28). Note that the edges of the function are not

sharp due to the loss of high frequency components during

the multiplexing step. Note also that the size of the com-

bined impulse response during playback is only 32 x 32 ele-

ments compared to the original size of 64 x 64 elements as

a result of scaling in the Fourier plane.
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CHAPTER 5

CONCLUSIONS

The representation of space-variant systems using en-

coded reference beams requires diffusers with good correla-

tion properties. One of the objectives of this report has

been to evaluate the correlation properties of a family of

binary phase codes for use as diffusers in multiplex holo-

graphy. In Chapter 2 the results of extensive computer simu-

lations to compute the autocorrelation and the crosscorrela-

tions of a set of codes described by Gold for use in spread

spectrum communication systems was presented. Simulations

of multiplex holography using Gold codes of different lengths

were also carried out. The results of these simulations indi-

cate that, due to non ideal correlation properties of the Gold

codes, the magnitudes of the crosstalk terms are quite large

resulting in poor reconstruction. However it was observed

that when the impulse responses have very small spatial widths,

acceptable levels of the signal-to-crosstalk ratio were ob-

tained. Thus it may be concluded that the method of space-

variant system representation using the Gold codes as dif-

fusers is more suitable for applications involving space-

variant systems such as magnifiers which transform points in

the input plane to points in the output plane, resulting in

delta function like impulse responses.

The effect of chirped wave illumination was briefly des-

cribed and the need for fabricating near perfect phase dif-
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fusers was also demonstrated. A technique for fabricating

phase masks using dichromated gelatin is discussed in Appen-

dix G. Additional work needs to be done in this area to perfect

this fabrication process as well as to determine simpler meas-

uring techniques for evaluating the quality of the resultant

phase masks.

Another objective of this research was to develop an al-

ternative multiplexing technique to generate composite holo-

grams representing the system transfer functions. In Chapter

3 a technique in which the transfer functions are sampled in

the Fourier plane and repositioned to represent a composite

hologram was presented. The multiplexed hologram generated

by this technique contains samples of the transfer functions

in nonoverlapping regions and hence the problem of hologram-

to-hologram crosstalk is completly eliminated. The method

also requires a single reference beam, unlike the encoded ref-

erence beam approach that required a number of reference beams.

However this technique requires generation of multiple images

of the input function during the playback step. Several schemes

which permit generation of these coherent multiple images were

briefly described. Additional research to implement these or

other methods for multiple imaging needs to be done in order

for this multiplexing technique to become practicable for the

representation of space-variant systems characterized by a

large number of impulse responses.
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Experimental results using computer multiplexed holograms

to represent a space-variant system sampled at 2 x 2 points

in the input plane were presented in Chapter 4. The experi-

ments were conducted for both disjoint impulse responses as

well as for overlapping impulse responses. The property of

coherent addition that is required in the case of overlapping

impulse responses was also verified through these experiments.

A slight variation of this multiplexing technique using a low

pass filter in the transfer function plane followed by repo-

sitioning of the filtered components was also presented. A

combination of these techniques may be adopted to multiplex

larger number of transfer functions in a single composite

array. Multiplication of the impulse responses by a random

phase mask to distribute the transfer functions more evenly

so as to reduce the quantization losses of small components

during the generation of computer multiplexed holograms was

also demonstrated. The computer simulations and the experi-

mental results presented in this report demonstrate the

ability of the sampled input/sampled transfer function approach

to effectively represent any slowly varying, linear, space-

variant system with finite spatial extent of the impulse re-

sponses. However implementation of this method for very large

size sampling arrays in the input plane requires high precis-

ion in the alignment of the multiple images of the input func-

tion during playback and is likely to be a limiting factor

in practical systems.
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APPENDIX A

Computer Program to Generate Gold Codes of Length

511 Bits and a Set of Nine Codes Generated by the Program.
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PR3"RAI SPACEVAi
TWIS PRUGkAM COIPUTES AND PLOTS THE AUTUCORKELATIUN

C )F A GOLD COVE IN A SET OF NINE 128 BIT CODES AND

C ITS CROSSCORRELATION WITw THE OTHER EIGHT MEMbERS
C IN THE SET. THIS IS DONE BY MULTIPLYING THE.FOURIER
C TRANSFORMS OF T4E CODES AND THEN FOURIER TRANSFORMING
C THE PROUUCT, IN THIS PROGRAM ONLY THE CENTRAL 42
C SITS OF THE 128 BIT CODE ARE USED IN THt CALCULATION
C SO THAT THIS OUTPUT MAY BE COMPARED WITH THE OUTPUT
C GF THE PROGRAM IPX4OLO.

DIEJSION A(Z28 G(12d),H(128),T(128) ,8(9#12b)
TYOE COMPLEX G,ATCMPLX,CONJG
CALLPLOTS(n,fi,j)

1-RITE(C6220)
1)031=1,12b

5 T(I)=(0.0fl.0)
C kEAV THE 126 BIT CODE TO BE USED AS THE CUMMON CODE

C IN THE CALCULATION OF CORRELATION 14ITH A SET OF NINE
C 129 BIT CuJES. THE CODE IS READ IN AS ZEROS AND TwOS,

3EAU(5,1n)(A(I),Il, 128)
10 FO;MAT(64F1.O)

C CONVERT THE VALJES IN THE CODE TO *1 ANU -1 TO
C NEPHESENT A PHASE MASK WITH 180 DEGREES PHASE

C D IFER ENCE.
LiQOUJ:44, #5
IF(A(I).GT.0)15,12

12 (1)=-IO
2O TO 20

15 A(I)=1
20 GO 4TINUE

L'030I=44,85
-1(I)=CMPLX(A(I),0.0)

30 COVTINUE
C CALCULATE THE FJURIER TRANSFORM OF THE CODE

CALL FOURIER (H)
CALCULATE THE CJNJLIGATE OF THE FOURIER TRANSFORM OF

C THE CODE AND STJRE IN THF ARRAY T,
JO 40 1=1,128

40 T(I)=CONJG(H(1))
TH= FOLLOWING DJ LOOP READS ALL THE NINE CODES IN

C TH= SET ONE AT A TIME ANJD COMPUTES THEIR CORRELATION

C ITH THE CODE PiFVIUSLY READ, THIS SET OF NINE CODES

C ALSO INCLUDES T-iE PREVIOUSLY READ CODE AS A MEMBER
C AND H NCE ONE 0, THE OUTPUTS IS THE AUTOCORRELATION
C AND THE RtiST AR" THE ClOSSCORRELATIONS,

D0120 KKzl,9

DO 60 1=1,128
U(I ) (0.0,0,0)

60 4(I)=(0,0,0,0)
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mEALJ A MSP REP FqoM THE SET AWLJ CONVcRT THE: VALUES
* C TO .1 Ai.fl -1.

riEAI](5,10) (AC 1) ,TI,128)
61 -OIMAT(5X,64Fl.U)

ARITEC6#61) (AC!), 1:1,127)

110 70 1:44,85
* 1IF(A( I),GT.0)65,62

62 A CI ) - I
'jO TO 7U

65 A (I ) z1
70 CO'NTI~vUE

DOQ 80 1=44,(35
'l( I) :C4PLX(A( 1),0,0)

80 C0'JTINUE
C CALCULATE THE FjtJkIER TRANSFORM,

CALLFOUR IER (H)
C 'LLTIPLY THE FfljPI5R TRAVSFORM OF THE CODES,

DO 90 1=1,12A

C GOI4PUTF THE FOUIEl& TRANSFORM OF THE PRODUCT TO O8TA~IN
C AS THE OUTPUT T4E CURRELATION BETWEEN THF CODES,

CALL FOuRIER (G)
[00 1?0 I=1,128

C "O: MALIZE THE M4GNITUiJES OF ALL THE ELEMENTS IN THE
C tJLTPJTS wITH REFF.RENCE TO THE VALUE OF THE LARGEST

C f:LEr1EN~T IN THE =NTIRE SET,

;10122 1=1,9
L01e2j:1, 128

122 XM=MAX1F ( 8 ( I #) A, Xti)
L) 0123 1=1, 9
30125.J=1, 128

125 i( I#J)=6( I,J)*9,i/X4
c PL3T LACH OF TH: NORMALIZED OUTPUTS TO A mIDTH OF

C ,56 I\'CHES.

0O400L=1, 3
CALLPLOT(CU.* , -2, 56,2)
GALLPLIT (0.*0,0*j, 2)
J: (K-i) '3+L
U01001=12., 126

160 CALLPLnT(b(J, I)/4op-I*0.V2,2)
C PRINT THE NORMALIZEU VALUIES OF THE CORRELATION OUTPUT,

!,R1TFC6*2u0)(6(J, 1),I:1,128)
200 FORwiAT(5x,16F4.j)
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220 F 0 R iA T/
400 CALLPLOT(O. U, -5.0,-3)
500 GALLPLoT(3,9. j,-3)

CALLDLOT(U,O. 1.,999)

!SUl~tDUTI'JE FOURIER (9)
THIS SUdRUtJTI~qE rALCULATES THE FOURIER TRANSFORM

C (F ANJ AHRAY OF 128 ELEmEN-TS,
C THIS PROSHAM ALSO SHIFTS THE ELETm ENTS IN THE
C AR4AY TO TAKE CARE OF THE FFT ALGORITHM WHICH
c ASSU'1I:S THE FIRST FLEMENT AS THE ORIGIN,

DIMENSION M(3)*S(32), I"V(32) #40128)
TYPE COilPLEXXB
-ATA(m=7, 0,0)
I T = u

10 i-;o 20 1=3,64
x 3 ( I)

20 0'VT IN UE

C CALL FFT ALIUORITHM HARM,
;e CALL HARM (B,H,INV,S,1,IFERR)

I T I
iO TO IU

30 kETLRi
ND



APPENDIX C

Computer Program to Simulate the Output

of a Multiplexed Hologram Using Gold Codes

as Phase Diffusers in the Reference Beam Path.
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q AM1 MPXHnLn
C THIS PRUGHAM SI')ULATES THE OUTPUT OF A SYSTE!1
C -.SI it' THE GOLD DL'ES AS rDIFFUSERS IN THE
C r4EFERENCE BEAM JATH TO REPRESENT A SPACc-VARUA-4T

C PRlCFSSOQ.A TOTAL OF TWO TRANSFER FU'CTIO~qs
E 2RESSNTING TH: SPACE-VARIANT SYSTEM AkE MULTIPLtYE10J

C 111 A SINGLE ARRAY. THE PROGRAM ALSO PLOTS THE
l I 4ULSE RESPO'NS:S USSU. 1IN THE qIMULATIn-\. AND T4it

C -jUTPUT WHEN THEY AQE RECOnflED AND PLAY'u. d4CK
C ."SlI4G Tm;E SULU ;ODES W~ITHOUT ANY M'JLTIPLEXI.JG.

C 1:9 THI1S PHrtiPAM OiL ECNRL42 PITS OF TH -
C 12R 91T C~j0E AR= USED IN THE CALCULATlnO' SO Tr''%T THI:

C UTPUJT OF THE SIMULATION WITH THE TOTAL 4Ir)TH
C hJUUAL TO THE SUvI OF THE ,'IOTHS OF TriF Tt,.O CunES

C AND) THE AlI DTH 0:- THE IPLULSE RESP'SF I S LESS TtIA'
C THE SIZE OF THE OUTPUT ARRAY. FOR THE SAME
C \EASO~i THE 1,IPU-SE RES00\1SES ARE AL O L1:IITE.)
C TO A SIZE CF 42 HITS.

TYPE C 'PLEX G,-sTCMPLX,CONJG S5

)Q j 1=1,12S
5 1 ( )=(fl.001110)

7 -j(T)=U.0
C EAD A 128 BIT SOLD COnE, VALUES READ IN

C AKrE 7EROS AND T,4)S.

10 FU:ZAATC64F1. 0)
C CUN'jERT THE VALJES TO *21 AND -1 TO REPRESENT

OHNSS "ASK WITH l8fl PE(SRRES PHASE DIFFERENCE
C ET4ELEN THE ELEIF14TS.

-10 20 1=44,85
IF(A( I) .GT.O) 1 ,Dl2

12 A(I):1l
10O TD 20

15 A (I ) =I
20 GuN~TI.uE

C0Q Jl 1=44,d5

30 C 0 . TIP-4E
C F3JtilEl TkA.SFO-? THE ARRAY TO REPRESENT

C THE REFERENCE R,-Ail ILLUMINATING THE HOLOGRAM.
CALL FOURIER (H)
bU0321=1, 128~

32 A (1 0 .0
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;'E4V ANJ I,"OULSE %S:Pfl)jSE 'j; THF- CPACE-Vr.ijA ';YST -~.
iEAJ(5, J3) (A (,J) ,J:44, d5)

* 33 i'C;.'!AT(klF2.O)
%'U351xlEj,128

C PLOT ANJD PRINT THE IN'-P'LSE RESPONSES.
CALLPLOTT (S)

* CALL2L0T (3, 0,0. jp-3)
C CO*'JTE THE TRANJSFER FUNCTION

CALL FOURIER (G)
C i"E'fERATE THE GO-iPOSITE TRANSFtR 7U\JCTION APRAY 8Y

C UmMIt THE PRO1jUCT OF THE FOoiR1ER TPANSFORAS
C ,F EACH OF THE IMPULSE RCESPONSES AND THE
C CORE SPONDINn RzFERENICE EEAiI FuNCTION.

;)0 4nl 1=1,128
40 T( I)=T( I)+G( I)*,ONJG( I))

C SIMULATE THE PLAYbACK OF AN IMPULSE RESPONSE
C -H- THE GOLD C)CE IS UISFD IN THE PECURi3IG
C A~n THE PLAYRAC- STEP.

i, D5 u I l1,128

CALL FOURIER (G)

c PLOT AND3 PRINT VHE OUTPUT WHEN THE IMPULSt riLsPUI SES
C ARE RErCO~i;D ANJ PLAYED PACK USIVG THE GiOLD conES.

(ALLOLOTT(R)

IF(i(.EI.1j70,10j
70 fboqu 1=1,126
80 -;(I)=H(l)

100 LONjTINUEJ

C SPAULATE THE PL4YbACK OF THE SYSTEM, w'4iE T-4
C rRA SFER FUNCTIJNS ARE ACCESSED (A) IND)IVIPUALLY
C A-4D ( J) SIl,-ULTAvF'EOJSLy FROM THiE CD lPOSITE ARRAY.

'7 ( 1)=T( I)'S( I)
T (1) T (I) *$ ()

C7ALLFOLUR IER C)
CALLF0U~ IfcqS)
CALLFOJRIL-R( T)
-i0l20 1:1, 128

C PRI~vT AND PLOT THE OUTPUT WHEN THE FIRST TRANSFER
C FUNCTION IS ACC:-SSEI) FROM THE CO'iPOS1TE ARRAY.

CALLPLOTT(R)
CALLPLOT( 0 *0,-4, 0,-3)



123

C 2RI;NT ANDl PLOT lHc- OUTOUT WHE,\' TH4E SECf)NI) TiA,,SFEk
C PUwJTION IS ACC=SSEDJ FROM THE COMPOSITE ARRAY.

CALLOLrJTT R)
GALLDLQT (3 *0#2.* *-3)

1.40 ~ :ASS )
PRIiJ Al',D PLOT THE OUTPUJT '4HF,\i SOT THE T QiA\ S r-;R

C FU JCTIONS ARE A CESSED FPCM THE COAPOSITE AiAY0
CALLDLITT (H)
GALLPLflT(O, a99i)

SU ROnUTINL FOURIER (9)
C THIS SJoRO1TINF CALCIILAT S THE F-LhRIFR T=A'FJI
C oF A\) AR AY r)F 128 EL'EENTS.

C THIS PROGRAM~ AL O SHIFTS T14E ELE'ENTS I-V THE
4JRRAY TU TAKEF C;RE OF THC FFT AL^ORiHM w'HIcH
ASSUMES THE FIRST ELFEMENT AS THE ORIGIN,.

TYDE 0'1IPLEXY,R
-AT AVI:7,G',o)

10 L) 20 1=1,64

1( 1+64)=x
20 CJTI, wJE

IF( IT.S * 1) 30,2
C ALL FFT ALUORI THM HAR'i.
12 3 ALL HA'RM1 (6.,M,IMV,S,,IFERR)

I T =1
-0 TO 1U

30 r-ETiRi4
~N
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c 1?Iis bS uuTIa4F PRIV'TS 4'%0 PLUTS THE MA~iNJITuDEq
c O'F THE UJIPUTS. THE OUTPUTS ARE NORMALIZEDJ 4ITH
c IEFERENCE TO TH-- LARGEST ELEMEMT IN THE ARRAY.

0IMEMSIO'J 6(126)
X;I4:U , 0
''Ut UJ=1 ,128

9 10 JM=NAXlF(t3CJ)#Xvi)
0)?U0J: I.,12 8

20 '(Jhzd(J)*Q9/XM4
CALLPLJT (u0, 0.56, 2)
CALLPLlT (U.*0,0.JD2)

j 60 ;ALLmLOT(di(jI)/4j,-I*0.fl2,2)

40 FOR~iAT(5X,32F3,j)
'RJTE( 6, 5U)

CALL LDT(U. U, 0.J, 3)
rLT u 4N
E~v P



APPENDIX D

Computer Program to Evaluate the Correlation Properties

of the Gold Codes Illuminated by a Spherical Wavefront
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PRDRAM SPHWAVF

C THIS PRUGHAM COIPUTES THF AUTOCOqRFLATIO4 A-4O THE
C COSSCDHRELATIO-4S OF THE GOLD CODES ILLUMINATEID BY A

C SPHERICAL WAVEF4ONT, THE COMPUTATIONS AltE CARRIED
C OUT FOR DIFFERENT VALUES OF THE CHIRP AS SPECIFIED

C nY THE RADIUS OF CURVATURE OF THE '4AVEFRONT AND THE
C -IDTH OF THE MASK, THE OUTPUTS ARE NORMALIZED pY
C FORCING THE AREA UNDER EACH OF THE AUTOCORRELATION
C PEAK FOR DIFFER=NT VALUES OF THE CHIRP TO RE EQUAL
C So THAT THE OUT;IJTS MAY PE COAPAPED WITH EACH OTHER,
Z AN ESTIhATE OF THE NOISE TO SIGNAL RATIO IS ALS
C .A!)E dY CALCULATING THE RATIO nF APEA U.4DER THE
C GORHELATIUV' CURveS TO THE AREA OF THE AUTUCURHELATIUN

PEAK.
hIME;SIOV A(128),H(2048),T(2043),H(128),C(129),D(12d)
TY'E CO{IPLEX H,T,CIPLX,CONJG,C,D,ARA,,RC
CALLPLOTS(O,n,1)

C READ THE TWO 12: BIT CODES, CONVERT THE VALUES TO
C *1 AND -1 TO REJRESENT A PHASE MASK WITH 180
C uEGREES PHASE DIFFERENCE,

REAw(5,10)(A(1),Ixl,12F) ,(R(I),I=l#12d)

lo FORNAT(b4F1,O)
00 20 I=44,65
IF(A(1),ST.0) 1i,12

12 A(I) =-I
GO TO 20

15 A(I)=1
20 01UTINUE

1Ob 1=44,b5
IF( (I),GT.0,o0)5,22

22 -(I)='-
OT026

25 r(I)=1
26 OUOITINUE

C THE FOLLOING DJ LOOP CUMPUTES THE AUTOCORRELATION
.C OF (A) WITH ITS=LF AND CROSSCURRFLATION OF (A) WITH

C (6) FUR CIFFERtENT VALUES OF CHIRP,
L'O5uOKK=1#8

:051=1,2048

5 T(I)=(0,O,O)
C -'EAD THE RADIUS OF CURVATURE OF THE SPHtRICAL
C AVErRONT AND THE WIDTH OF THE CODE MASK.

%EAD(5,8)R,W
8 FORAT(2F6.2)

C -OA THE CODES IN A LARGER ARRAY SO THAT EACH ELEMENT
C IN THE ORIGINAL ARRAY OCCUPIES 16 ELEMENTS IN THE
C JE4 ARRAY, THIS IS NECESSARY TO REPRESENT THE PHASE

C \ARIATIONS WITHIN EACH ELEMENT-WHEN THE CODE
C IS ILLUMINATED JY A SPHERICAL WAVEFRONT,
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1,0 30 1=4,,b5

C CALCULATE THE PATH DIFFEPENCE AT THE CENTER OF L-ACI4
C tLEMENT RELATIVi TO THE CENTER OF THE ARRAY,

0035 1=1,1024
S:CSORT (R**2+( c 10,5)*w~/2040)**?)-R)

C COM4PUTE THE PHASE DIFFERENICE FOR A WAVELENGTH OF

C 200 NANJOMETERS.

L=O
L: (D- L)*2*3,142 i

C CHANGE THE VALU=S OF THE ELEMENTS IN THE COMPLEX ARRAY
C TO INCLUDE THE :FFECT OF THE PHASE CHANGE DUE TO
C THS CURVATURE OF* THE WAVFF'RONT.

T1024 I :T( 102 1) *CMPLX( COS( D)PSINC0) )

T(1024,I)=T(1024,I)*CMPLX(COS(D),SlNv(D))

35 ti1O24-1)=H(102s-1 )*CMPLX(COSD)St4J(D) )
004PtJTE THE AUT. AND THE CROSS-CORRELATIONS,
CALL FO)URIER (H)
ZALLFOURIER(T)
1,O 40 1=1,2046
1(1 :T (1)*COMJG (H (I))

40 'lI)=H( I)*CON'jC,(H( I))
CALLFLJklJNR(T)
"'ALL FOURIFR (H)

C CO1PUtTE THE AVE-?AGE MA~i4TUDE OF EVERY 16 ELEMENTS
AND~ GEN'ERATE OUTPUT ARRAYS OF 12S ELEMENTS EACH.
iW 12U I11112d

,1011 0K=J, M
1(J)=T(J)+.T(Ve.1)

110 H( J):H(J)+H(Ka.1)

120( ( ):T(J)

*C 00',PJTE THE rMAGJITI-JDE OF THE PEAK( OF AUITO-CORRELATION.

13 1035=112

1.33 AM4AXF(X,X,)
C C04iPJTE THE ALG-2RAIC SUM OF THE ELEMENTS IN THE

*C DUTPUT ARRAYS.

AR: z(U *U, 0 U)
140 D0150 1=1,128

ARAzARA+CC I)
150 ARC=ARC+0cI)

* ACABSCARA)
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ACzCAdS( AkC)

C L;OIPJTZE THF N~OISE: TO SIG'JAL RATIO OF AUTOCCRRELATI~iv
C AND THE CROSSCOiRELATION FUNCTIONS USINU THE PEAK

C CF AUTOCORRELATION AS REFERENCE,
qA:AA/XM-l

C KOR ALIZE THE VALUES WITH REFERENCE TO THE PEAK OF
oUUCORRELATION.ALSO SCALE THE VALUES ACCORDING TO THE
-10lTH OF THE MASKS WITH ',IDTHz3981 AS REFERENCE.

z THIS ENSURES THAT TH - AREA UNDER THE AUTOCORRELATION

PEAKS FUR MASKS WITH DIFFERENT WIUTHS ARE ALL EQUAL,

CI):)D(I)-(99/xIl)*(3.61/w)
170 C( I):C( I)*(99/X,1).(3,81/w)

190 FOR' AT(5X,214RAOIUS OF WAVeFRONT =,F6,2)
' RI T EC6,200) W

200 FORMAT(5X,214WIUTH OF CODE MASK z #F6,2)
.RITE(6#210)XM

'10 ORiiAT(5X,31HHElCnHT OF AUTOCORRELATION PFAK=,E9.2//)
l'RITE(6,220)AA

2201 FQRiAT(!7X,21L4AA=AREA OF AUTOCORN ,E9,2)
%R ITE 6, 230)ACJ

230 FORi.;,AT(5X,2j1LAC=AREA OF CROSSCORJ ,E9.2)
".RITPE(6,240)RA

240 ORiiAT(5X,
141+qnJfISE TO SIGNAL RATIO OF AUTOCORRELATION:.,F8.2//)
4RI TE 6,250 )RC

250 0hA(X
1",1H4.ATIO uF K'OISE OF CROSS CORN TO SIG.NAL OF AUTOCORP~z,
2F8. 2/I)

C PU3T THE AUTO Avfl THE CROSS-CORRELATIONIS. THE WIDTH
C OF PLOTS ARE SCALED ACCORDING TO THE WIUTH OF EACH
C -ASK.CWIDTH OF ;'LOTS -FOR MASK WITH W=3,dl IS

C TAKEN AS 2.56 IJCHFS AN"D IS USED AS REFERENCE FOR
c CO~IPUTING THE P0-T SIZE FOR OTHER MASK mIDTHS.)

GALL2LOT Cu ,,-2.*56*W/3 *81.,2)

GALL 0 LOT (0,0,0 *u, 2)
1)03001=1,128~
X='CARSCC( I))

300 CALLPLOT(X/100, -I'0,f2..A/3.d1,2)
CALLPLOT C(I0,-4 *0,-3)

CALL0LOT (0.0,-2. 56*w/3 b,812)
;ALLPLOT(0.O0,0,U,2)
D 04 00 1=:1,126d

40J0 CALLPLOT(X/llO,-I*D. f2*M/3.dl,2)
CALLOLOT(3,00,4, 00,-3)

500 CONTINUE
CALLPLOT (0 *0,,J,999)
END
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SUIRUTI')E Fr'UPIER (R)
;)1 4EVS I O' MC 3)P3~(512),! .V (512)5 BC2fl48)
TYOE COi1PLEXXPR
IIA TA CMa211, 0, )
IT20

10 0)0 20 1s1.1024

20 CONiTINUE
IFC IT.=E0,1)30#2e

22 CALL HAR41 (BmpPJV,S,lplFeRR)
I T--l
1;0 TO Iii

~SO rETURN
EN

hu
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APPENDIX E

Computer Program to Simulate the Output

of a 1-D Processor Using the Sampled Transfer

Function Approach for Multiplex Holography
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C THIS PQOGRAM MULTIPLEXES THE TRANSFER FUNCTIONS
C OF FOUR IMPULSE RESPONSES AND GENERATES A
C SINJGLE COMPOSIT;- ARRAY USING THE SA.4PLIN~G
C TECHNIQUE IN TH= TRANSFER FUNCTION PLANE.
C THE PROURAM PLOrS THE INPUTS REPRESENTING THE
C IMPULSE RESPONSzE ANJD THEIR RESPECTIVE
C 7RANSFER FUNCTI3NS BEFORF AND AFTER SAMPLING,
C THE PROGRAM ALSD SIMULATES AND PLOTS THE
C PLAYBACK OF THE IMPULSE RESPONSES WHEN
C THE TRAN'.SFER FUNCTION!S ARE ACCESSED (A) INDIVIDUALLY,
C (8) SIMULTANFOS-Y.

II'ENS I ON AC 128), 8 128) G (128) *H( 128).T (128) C (128)
TYPE COMPLEX G*,HT,CNIPLXPCONJG,X
CALL PLUTS(0,6sl)
POIAIOK=1, 4

C *lEAD THE IMPtILS:-; RFSPONJSE.
READ( 5, 10) (AC1), 1=1#128)

10 FORMAT(64F1,D)

20 H (I) :ClPLX (A 1), 0,0)
C rENERATE THE TRANSFER FU;4GTION USING THE FAST
C Fo-JRIER TRANSFOi1 ROUTIN~E,

ALL FOURIER (H)
C SAIPLE THE TRANMSFER FUNCTION AT AN INTERVAL OF FOUR
C ELEMENTS A~ND LOAD THF SAmPLES IN THE COMPOSITE ARRAY.

U03U I=K,128o4
30 T(I)=H(I)

C SCALE THE IMP~ULSE RESPONSES TO A MAXIMUM
C VALUE OF 99 AND PRINT,

X M =0 * 0
VO 40 1=1,12P
AC I )=AS(A( I))

40 XM:MAX1F(AC I),X'i)

50 A(I)=A(1)*99/XM
'2RITS(6, 60)(A( 1). 1:1128)

60 1'OMAT(5X,32F3.j)
RI TEC 6s70)

70 FU.4MAT(//,/)
C PLOT THE It!PLILS= RESPO\q5F,

CALLPLn'T(U.0,-2.56,2)
CALL0LOT (060,0.*U, 2)
D05d :1, 12P

80 CALLDLOT(A( I)/4j*,1*0.l2,2)
CALLOLOT(0.,-4.0p-3)

C 3LOT THE MAGNITJOE OF TRANSFER FUNCTION,.
DO85I:1, 128



F7) XM 2 . u132

u090 11, 128
90 J(mMAX1F(8(I),X4)

CALL=LOT(U.Uv-2,56,2)
CALLPLOT( 0.0o, 02)
bO95l31. 128
4( I )=u( I)*2.5/Xi

.95 GALLPLOTU( I),-1*0.02,2)
* CALLOLOT(3.O,4,U,-3)

10U0 O0'TINUE
CALLPLOT (-12.0,*u ., -3,
(ALLOLOT (0., , *G,999)

CALLPLOTS (0.0,1)
c SIIULATION OF P6.AYBACK,

['iO2U0M=1, 4

S AI1PLE THE COMPJSITE ARRAY TO RETRIEVE
C ALL THE SAMPLES RELONiG TO A TRANSFE~R FUNCTION.
C PLOT THt: MAGN'ITJnES OF THE SAMPLED

*C THAi4SFER FUNCTIJN.

-,12n I :1, 128,

IOr(I)=CA8S(GC I))
xlu , 0

1I40 1 =I.128

CALLPLOT(O.,P-2.'56,2)
CALLoLOT(0.,0, U,2)
CALLPLOT(O.,O-Kkfl.02*2)
1)I01501=K, 128,4

CALLPLOT(Ii(I)p-I.0.02,2)
[CALL*L0T(0( I) p-( I+)*O. 02,2)
C:ALL0LOT(0.,v-(I)*0.02,2)

150 CALLPLOT(O0#-( I.4)*0,02,2)
CALLPLOT(0.00-4.0,-3)

C F0JRIER THANSFORM THE SAMPLED TRAiNSFER FUNCTION.
GALL FOURIER (G)

C 2LIT THE OUTPUT REPRESFNTING THE PLAYB3ACK<
c C~F THE SYSTEM W-iEN THE TMANSFER PUNCTIONJS ARE

IC INDIVIDUALLY AC..ESSE').

16 0~ 1 2:C AUS( G( I)

j01701=:1,128
170 XMzMAXIF(8( I),Xi)
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101751=:1,128
175 eICl)zb(I)*99/XM

-RITS(6, 60)(BUi),!S1,128)
4~RITEC6, 70l)
CALLPLOTC U. U,-2. 56,2)
CALLPLOT(0.0,.J *

i'Uld0Iz1, 128
180 CALLPLOTC(C I)/4J#-I*DO.002#2)

CALL'LOT(3,0,4. u,-3)
20n CONTINUE

CALLPLOT(-12.0, J.0,-3)
CALLPLOT(C ,0, 99i1)
CALLOL0TSC 0, 0,1)
PLOT THE iIAGNITJDE OF THE COMPOSITE TRAN~SFER FUNCTION

C ARRAY REPRESENTING THE MULTIPLEXED HOLOGRAM.
I; 010 1=1, 128

210 :I)=CA6SCT(I))

220 XelzMAX1F ( 8I ,X -i)
r'ALLPLOT (080 D-2.56,2)
CALL*LOT ( G 0,0 * , 2)
1)O225I=1, 128

225 CALL*LOT(8( 1)#* L*0.02. 2
;ALLPLOT( 0.0, -4.0,-3)

C FUJRIER TRANSFO4H THE COXPOSITE ARRAY.
CALL FOURIER (T)

C PLOT THE OUTPUT REPRESENTING THE PLAYSACK
O F THE SYSTEM 14IEN ALL THE TRA4SFER FUNCTIONS

C A~q SImULTANFOUiLY ACCFSSED,
U02.01 I 1, 128

230 l' I )=CAtlSCTC I))
Xi r-: 0 . u
1,02401I=1, 128

240 Xt.-:~iAXI F C (I), X '

250 1C1)zb(I)*t)9/xM
RITE(6p 60)0C3~(1)11:1,128)

CALL*LOTC0.0,-2,56o2)
CALL2LoT (0.0, U. L'2)
L0?80 1=1, 128

280 CALLPLOT(B( I)/4j,-I*fl.02,2)
CALLOLOT(0.0,4. jp-3)
CALL PLOT(O,fl,9 9)
b :4 D
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SU~j.%')UTINL- Fr)URIFN (r8)
t tHIS SUBROUTINE CALCULATES THE FOURIER TRANSFURM

C LUF AN ARRAY OF 128 ELEMENTS.
C THIS PROGRAM ALSO SHIFTS THE ELEMENTS IN THE
C ARRAY TO TAKE CARE OF THE FFT ALGORITHM WHICH
C ASSUMES THE FIRST FLEMFNT AS THE ORIGIN.

UI04ENSION M(3),s(32)#INV(32) ,R(128)
TYPE COMPLEXXR
bATA(M=7,0,01
IT.O

10 iO 20 I12,64
X=B(1)

(I)= 8(1(64)
iCI'+64)=X

20 COJTINUE
IF(IT.EQ,1)3r,2d

c CALL FFT ALUORIIHM HARM,
22 ;ALL HARM (8,Mji'V,S,$,IFERR)

IT=l

GU TO 10
.0 ;ETURN

N()

L-N

.... ...lib... . ... ... ... .... ...... .... ... ... ii] .. ...i1 ... ... .I -' -' ... .. .... . . ..ill



I

APPENDIX F

Computer Program to Generate 2-D Composite

Hologram and the Output of a Processor Using the

Sampled Transfer Function Approach
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PRGAI1 SAM4PLER
THIS PROGHAM iE4ERATFS AND PLOTS THE MULTIPLEXED

C TRANSFER FUNCTIJN HOLOGRAM1 OF FOUR IMPULSE

C RESPONSES USING THE SAIPLING TECHNIUUE IN THE
C FREQUENCY PLANE. THE PROGRAM ALSO SIMULATES AND
C PLOTS THE SIMULTANEOUS PLAYBACK OF ALL THE
C TRANSFER FUNCTIDNS.

DI4ENSION A(64,54) 3(C32) *C(64)
TYDE COMPLEX A*XsCMPLX 8~
'-HITE (6,5)

5*FORIAT(////)
P1:3.1415926535
DOIUOK=1, 2
FJO100L:1, 2

C PEAD THE IMP[-'Lqz- RESPONSE.

10 FURAAT(32CC(F1. U,F1, 0)))
C
C 'ULTIPLY THE IM:IULSE RESPONSE WITH A CHECAER90ARD
C -ASK OF +1 AND -1 VALUES, THIS Iq DONE TO SPREAD OUT
C THE TR~ANSFER FU4CTION 4URE EVENLY I14 THE FOURIER PLANE.
C (HI)WEVFR THIS W4ILL NOT AFFECT THE OUTPUT ORSERVED
C AS MAGNITUiDE,)
C

1)015 Jzl#16
110l8JJ=1, 4

C .E\ERATE THE TRANSFER FUNCTION.4
CALL FOUR IER CA)

C CONVEkT THE VALJES OF THE TRANSFER FUNCTION I;NTO
C ',AGN'ITUDE AND A'JGLE*.-

L Oc5uI:1, 64
flO50J=1, 64
AM:CABS(A( I#J))
AA=CANG A I.jj) )
IF( AA) 20, 30,30

20 4A=AA,2*Pl
30 AL:A4

AC JJ)CMPLXCAL,AA)
50 CONTINUE

C SAI1PLE THE TRANSFER FUNCTION BY SELECTING EVERY
C ALTERNATE ELEMENTS IN EACH DIMENSION.
C STI)RE THE SAMPLEzS ON A TAPE.

PoluI:K, 54,2
80 VRITEC3)(AC I,J)#J:Ls64p2)

100 CONTINUE
WEWIND 3
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C 'E%4E4TE SAMPLEL.] COMPOSITE TRA4SFER FUNCTION 4OLOLiRA?-.
J)U 20O0K 1, 2
D02JJOL=1,2
10fI=K,64#2

r? A2 U( 3 ): e3

002Un'4T1,32

RE -4 I4 IU3
6-

C THE- FOLLOWING DJ LflOP GENERATES THE MULrIPLEXELI
C OL0nRAM PLOT W-iEN THE IN'DEx IS 1 ANDl SIMULATES

C THE qI'4ULTANEOUS PLAYBACK OF ALL THE IMPULSE
C ESPONSES tWHEN INDEX IS 2.

210 i0700L=1,2
C SCALE THE MAGN~ITUDES OF THE TRANSFER FUNCTION
C TO A VALUE OF 1 .

X m: 2 0 0

iO250J:1, o4
250 XM=iIAXIF(RFAL(AC I,J))*XM)

U03001:., b 4
£0O3ufjlJ, 64
AM=(REAL(A(I#J))/XMi)*15.0

CALLPLOTS (12,,)
C PLOT THE ORIENTATION MARKAR.

:ALLOLOT( -O.5,U.IJ,2 )
GALLPLOT( 0,n,0.0,2 )
CALLPLIT( fl.0,-u.5,2 )
CALLPLOT( 0,0v,0,2 )
f( A .L L L0T (-1 ,5, 0 *0, -3)

JO ,0 J1, 6 4

C
C IF THE PHASE OF THE TRANSFER FUNCTION ELEMENT IS
C ET4JEEN 0 AND le0 DEGREES PESOLVE THE VALUE INTO
C CO4P,1NFNTS ALON 0 ANJD 120 DEGREES.

A3=0

A A: A IMA G(CA (I ,J) )
IF(AA.LT.2*PI/3)330,340

330 ,A1:Av*(COSCAA)(5PJ(AA)/SGRT(3e0) ))
/A :2* P /3 -A A
A2:AM*(C0S(AA)4(S'4(AA)/S(URT(3,0)))
f'-OTU370



138

C IF TH4E PHASE OF THE TRANSFER FUNCTION ELEMENT IS
C '-ETWSE\ 120 AND 240 DEGREES RESOLVE THE VALUE
C INTO CONIPOF"ENTS ALONG 120 AND 240 DEGREES.

340 IF CAA *LT.* P 1/3)350, 360
350 AA=AA-2*PI/3

A2:AM* C OS CAA * (SI NCAA )/SORT (360)))
AA:2*P I/3-AA
A3=A'.*(COS(AA).(SlJ(AA)/SORTC,,)))
UUTU370
IF THE PHASE OF THE TRANJSFER FUNCTION ELEMENT IS
-iETwEE'J 240 AND 360 DEGREES RESOLVE THE VALUE

C INTO CONPONENTS ALONG 24nl AND 0 DlEGREES,
360 AA=AA-4*PI/3 I

A3=A4*(COS(AA).cSINsAA)/SQRT(3.0)))
4AA2*P I/3-AA
Al=AM*(CSAA)(SpIN(AA)/SQRT3,U)))

C --UA'4TIZE THE MANITUDE OF TRANSFER FUNCTION INTO 15
C STSPS AND PLOT ]HE RESOLVED COMPONENTS TO A WIDTH OF
C 0,05 INJCHES AND THE HEIGHT PROPORTIONAL TO THE
'C i'A GNI TULE ,

370 IF (Al.*LT *1,0)40 u, 3P0
360 ' M =A I

LO0390K=1, Nm
GALLPLOT(-K*0.01,-0.05,2)

390 CALLPLOT(-K*n*l*, 02)
400 CALLPLOT( 0.0, -0.05, -3)

IF(A2.LT.1.0)43j,410
410 ", r A 2

LG0420 K=I.,NM
';ALLPLOT(-K*fl.0l,-0.05,2)

420 CALLPLOT(-K*0 .Oi,O,O,2)
430 CALLPLOTCU 60, -0. 05,-3)

IF (A3,*LT.1.0) 46j ,440
440 NA 3

I )Od4lr=1 , NM
0ALLPLOT(-Kv0.O1,-0.05,2)

450 CALLOLOT(C-K*0 *01,0,,2)
C r;OVE THE PEN TO THE LOCATION OF THE NEXT ELEMENT.

460 GALL0LOT(0 ,U,-0.05p-3)
500 C 0 NT Ii' JE

C -*OVE TW42 PEN TO THE BEGINING OF THE NEXT LINE.

600 C0'JTINUE
C RETURN THE PEN TO THE STARTING POSITION AND REMARK
C THE ORIENTATION MARKER, C THIS WILL CHECK THE TOTAL
C CU41ULATIVE ERROi IN THE PLOTTER POSITIONAL ACCURACY,)

CALLPL0TC11.10, u.O,-3)
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CALLPLOT( 0.0,-J,5*2 )
t CALLPLOTC 0.0,0,0l,2 )

CALLZLOT( -0,5#u,U#2 )
CALLPLOT(flSODOSO,2 )
IF CL *El.2) 695 6,73

C CO'VE$T THE IMAG'1TUUE AND PHASE OF THE TRANSFER
C FUNJCTION 8ACK 1 40 REAL AND ImAGINARY PARTS,

553 1)06541=1,64
ii 0654 J:1,64
AM:REAL(A( I,J))
AA=AIMhAG(A( I,J) )
AX=AMi*COSF (AA)
AY=AN *S INF (AA)

554 A( I#JhCMPLX(AX,AY)
C FOURIER TFRANSFOqM THE TRANSFER FUNCTION TO SImU'LATE

C THE OUTPUT OF TAE SYSTEM m'HEN ALL THE FUNCTIONS ARE
C SIMULTAN'EUUSLY JLAYED BACK,

655 CALL FOURIEH(A)
0 C0'JVZRT THiE 0UTJUT IN~TO MAGNITUDE AND PHASE AND
c RETJRN TO THE PLJT ROUTINE TO PLOT THE OUTPUT,

J.;0680 1=1,64
U.0680 J=1,64
A M =CA~SC A ( I#J) )

IF(CAA) 660, 66l, 660
560 AA:AA+2*PI
580 A( I,J)=CMPLX(AM,AA)
595 GALLPL0T(O,0,99-))
70)0 COUJTI.'jUE

N D
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SUARO~UTINJE FOURIER (A)

C THIS SUBROUTINE COMPUTES THE FIU71FR TRANSFORM
C OF A 2-U ARRAY OF 64 X 64 ELEMENTS,
C THE OkOGRAM ALSJ SHIFTS THE QUADRANTS OF THE ARRAY
C TO TAKE CARE OF THE FFT ALGORITHM1 WHICH ASSUMES THE
C FIRST ELEMFNT AS THE ORIq1N.
C

D 14EIJU IN A (64, 54) *i IVV(16) .S(16)1 MC3)
TYPE COMPLEX A.X
'JATA (Mz6, 60)
ITzO
IF SET:1

10 LO2UI=,32

X =AC , J)

AC I,5J.(I32,J+3X
(A( I3,J+32)=

20 A(I,32,J)=X

C CALL THE~ FASiT PJuIRIER T.'VNSFOR4 ALGORIThM HARM,
31 C4LL-AARM(A,M,1'4J,S,IFSET, IFER.?)

~.-T=C6,35)IFE~i
.35 VrlAT(5x,6hIFE24Pz,I3////)

I T z
L0 TOC 10

40 R'~ETURN
t:I 0
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A computer program to plot a 2-D amplitude mask of 127 x

127 elements using a 127 bit Gold code given in Table (2-2.)

has been described [20]. Using a modified version of this

program a set of nine plots was prepared on a thick bright

white drawing sheet to a size of 3.81" x 3.81" each. A

typical enlarged plot is shown in the Fig. (G-l). These

nine plots were mounted on a white poster board to form a

3 x 3 array with center to center distance between each plot

in either dimension equal to 13 inches. This array of plots

was theh photo-reduced such that the center to center dis-

tance between the plots is equal to 0.3 inches. This dimens-

ion was chosen to match a fly's eye lens array with which

the masks were to be used. After this reduction the size

of each cell in the array is approximately equal to 18

microns. Thus to retain good resolution after photo reduc-

tion, high resolution film plates type Kodak 649F was used.

The exposure details and the processing times were as fol-

lows:

Distance between the camera (fitted with a 50 mm lens)

and the plots: 94 inches.

Exposure: 4 secs. (plots illuminated by diffused

daylight in the shadow of a building during bright sunlight).

Develop in Dli solution: 12 minutes.

Rinse in Kodak stop bath: 30 seconds.

Rapid fix with hardener: 5 minutes.

Wash in running water: 20 minutes.
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Figure G-1. Typical 127 x 127 element Gold code mask.
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A technique to fabricate phase masks from this binary

amplitude mask using photo resist solution has been des-

cribed [21]. It was observed that in this method non uni-

form thickness of the coating of the photo resist resulted

in variations in the phase difference in different regions

of the plate. An alternative method is to use the photo

sensitive property of gelatin sensitized by a dichromate

solution. A number of papers have been published describ-

ing the technique of fabricating phase holograms using

dichromated gelatin [22-26]. One such method makes use

of Kodak 649F plates in the starting step to prepare the

sensitized plates [27]. The advantage of using the 649F

plates is that the glass base of the film plate is already

coated with a uniform layer of gelatin and hence the prob-

lem of coating the glass with a uniform gelatin layer is

avoided. The detailed processing procedure is given below:

I. Preparation of plates coated with gelatin.

(1) Fix a 649F plate in rapid fixer with hardener

for 15 minutes.

(2) Wash in running water for 10 minutes.

(3) Soak in methyl alcohol for 10 minutes with

agitation.

(4) Soak in clean methyl alcohol for 10 minutes

with agitation.

(5) Dry in a vertical position.
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At the end of these steps we have a clear glass plate

coated with a layer of gelatin on one side.

II. Sensitization of the plate.

(1) Dissolve 10 gins of purified ammonium dich-

romate (Baker brand or equivalent) in 200 cc of dis-

tilled water. Add 0.5 cc of photoflow solution.

(2) Filter the solution.

(3) Place the glass plate with the gelatin

side up in a flat tray and pour the ammonium dich-

romate solution till the plate is completely covered.

Leave it in this position for 5 minutes.

(4) Remove from the solution and place at a

small inclination (approximately 100) for 3 minutes

to let the excess solution to flow down. Clean the

edge of the plate with a paper towel.

(5) Place in a light tight box at the same in-

clination as in step 4 above for 24 hours.

The steps 3, 4 and 5 have to be carried out under

safelight illumination using red filter. At the end of

these steps we have a sensitized and prehardened plate.

III. Exposure.

(1) Place the sensitized plate and the amplitude

mask such that their emulsion sides are facing each

other.

(2) Expose for 12 minutes under a 500 watts

3.
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tungsten filament photo lamp placed at 13 inches dis-

tance. (Actually several exposures ranging from"4

minutes to 20 minutes are necessary to obtain at

least one mask with the desired phase difference.)

IV. Development.

(1) Wash in clean running water at 680F for 10

minutes under safelight illumination using red filter.

(2) Soak with agitation for 2 minutes in a mix-

ture of 50% isopropyl alcohol and 50% water.

(3) Soak with agitation for 10 minutes in 100%

isopropyl alcohol.

(4) Pull the plates out of the alcohol at a

rate of 1 cm/min., simultaneously blowing hot air

directed at the surface for rapid drying.

These steps complete the process and a phase mask is

obtained.

The phase mask thus fabricated was checked in a Mach-

Zehnder interferometer to check the phase difference be-

tween the elements. However in view of the extremely small

size of the cells it is difficult to resolve the fringe

patterns intersecting each cell. Thus a reference mark

of large size was made on the plots and was used as ref-

erence to check the phase difference between the exposed

and the unexposed parts. However because of the following

processing problems, phase masks to the desired accuracy

could not be fabricated.
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* (1) Due to the high resolution required during the

fabrication of amplitude masks Kodak 649F plates were used.

But these high resolution plates are not of high contrast

type. This resulted in non uniform contrast in the ampli-

tude mask due to differences in illumination and hence

non uniform exposure of the dichromated gelatin plates.

(2) The sensitivity of the dichromated gelatin plate

is a function of the time lag after sensitization. Thus

exposure time required was different for each trial depend-

ing on this prehardening.

(3) The development process is highly sensitive to

the temperature and the Ph of water [24] and it was not

poseible to control these parameters in the existing set

up.

(4) The measurement was based on a large reference

mark made on the plot. But due to difference in the con-

trast of this reference patch with those of the actual

cells it could not be confirmed whether all the cells in

the mask have the same phase difference.

All these problems require further study before a

standard process to obtain repeatable results may be fina-

lized.

$


